


# Diabetes in Australia

- 1.7 million Australians with diabetes, of these 85% have T2DM
- 2-fold excess risk CV death in patients with diabetes
- Risk factor for progression of heart failure, admission for heart failure and premature death
- Significant individual, societal, economic cost







Multidisciplinary care
Lifestyle intervention
Smoking cessation
BP lowering
Lipid lowering
Glucose lowering agents
Psychosocial care

### T2DM Current standards of medical care

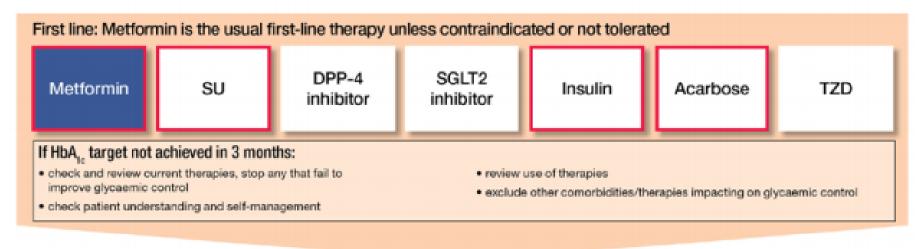
- Lowering blood glucose levels in people with T2DM
  - clear benefits for preventing microvascular complications
  - potential benefits for reducing macrovascular complications and death
- Treatment should be individualised
- For patients with atherosclerotic heart disease, incorporate an agent with strong evidence for CV risk reduction

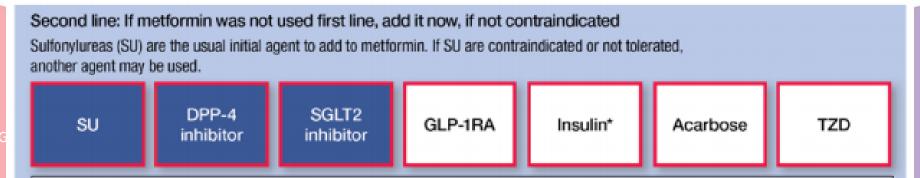




# Individualised Hba1c targets

| Group                     | Target Hba1c (%) |
|---------------------------|------------------|
| Pregnancy planning        | 6.0              |
| T2DM early disease no CVD | 6.5              |
| General                   | 7.0              |
| Reduced hypo awareness    | 8.0              |
| Major co-morbidities 8.0  |                  |
| Short life expectancy     | Symptom control  |




# AUSTRALIAN BLOOD GLUCOSE TREATMENT ALGORITHM FOR TYPE 2 DIABETES



Determine the individual's  $HbA_{lc}$  target – this will commonly be  $\leq 53$  mmol/mol (7.0%). If not at target, or if an  $HbA_{lc}$  reduction of  $\geq 0.5\%$  is not achieved after 3 months, move down the algorithm<sup>1</sup>.





# How to select T2DM therapy?

Age/life expectancy

QOL considerations

**BMI** 

• Is weight a major concern?

Comorbidities

- Is there pre-existing atherosclerotic CVD, heart failure?
- Is there CKD?

**C**omplications

- Acute: risk of hypoglycaemia (unintentional & intentional), DKA
- Chronic: microvascular vs macrovascular

Cost / PBS restrictions

Patient preference

- Willing to inject?
- Pregnancy planning?







### Metformin

- Decreases hepatic glucose output, lowers fasting glucose
- Hba1c lowering: 1.5 %
- Dosage: 500mg tds to 3g 500mg (or max 2g for XR)
- Side effects: diarrhoea (start low go slow), vomiting, B12 deficiency
- Temporary cessation if acutely unwell/elevated lactate
- CKD:
  - CrCl 60-90ml/min: 2g daily
  - CrCl 30-69ml/min: 1g daily
  - CrCl 15-30ml/min: 500mg daily
- CV outcomes data
  - Reduction in MI and all cause- mortality in overweight patients (UKPDS)







# Sulfonylureas

- Stimulates insulin release from beta-cells
- HbA1c reduction: 1.5 2%
- Side effects: hypoglycemia, weight gain
- CKD: dose reduction, short acting gliclizide/glipizide
- CV outcomes data
  - Overall CV safety (UKPDS, ADVANCE)
  - Increased mortality rate with target Hba1c of 6.4% (ACCORD)
  - Neutral with target Hba1c < 7%</li>







### **TZDs**

- PPAR -gamma agonists, lowers blood glucose levels through insulin sensitisation
- Hba1c reduction: 0.8%
- Side effects: weight gain, increased fracture risk, bone loss (rosiglitazone), increased risk of bladder cancer (pioglitazone)
- CKD: no dose reduction required
- CV outcomes data
  - No reduction in all-cause mortality (PROACTIVE, RECORD, TOSCA.IT)
  - Increased incidence/exacerbations of heart failure (RECORD)







### Acarbose

- Alpha-glucosidase inhibitor, delays absorption of dietary CHO and reduces post-prandial blood glucose level excursions
- Hba1c reduction: 0.7%
- Weight: neutral
- Side effects: GI intolerance, discontinuation in up to 25%
- CV outcomes:
  - Neutral. No reduction in 5-point MACE (ACE)







### DPP-4 inhibitors

- Inhibits the inactivation of GLP-1 (Stimulates beta-cell insulin release, slows gastric emptying, suppresses glucagon)
- Hba1c reduction: 0.7%
- Weight neutral
- Side effects: mild GI, nasopharyngitis
- Contraindicated: history of pancreatitis
- CV outcomes
  - Overall CV safety [SAVOR-TIMI, EXAMINE, TECOS]
  - Increased hospitalization for heart failure with saxagliptin (SAVOR-TIMI)





### DPP4 inhibitors in CKD

- Saxagliptin
  - CrCl > 50ml/min: 5mg daily
  - CrCl < 50ml/min: 2.5mg daily
- Sitagliptin
  - CrCl > 50ml/min: 100mg daily
  - CrCl 30-50ml/min: 50mg daily
  - CrCl < 30ml/min: 25mg daily
- Vildagliptin
  - CrCl > 60ml/min: 50mg BD
  - CrCl < 60ml/min: 50mg daily</li>
- Linagliptin
  - 5mg daily, no dose adjustment required





# DPP-4 inhibitors "Gliptins"

- Sitagliptin (Januvia®)
- Sitaglitpin/Metformin (Janumet®)
- Linagliptin (Trajenta®)
- Empagliflozin/Linaglitpin (Glyxambi®)
- Vildagliptin (Galvus®)
- Saxagliptin (Onglyza ®)
- Saxagliptin/Dapagliflozin (Qtern®)
- Alogliptin (Vipidia®)







### SGLT2 inhibitors

- Reduces renal glucose reabsorption / promotes glycosuria
- Hba1c reduction: 0.58%
- Side effects:
  - Weight loss, genital infection, reduction in BP, dizziness, dehydration, fractures & distal lower limb amputations (canagliflozin)
- CV outcome data:
  - Reduction in all- cause mortality and CV mortality (EMPAREG, CANVAS)
  - NNT = 39 to prevent one CV death [EMPAREG]
- CKD:
  - Slow progression CKD (EMPAREG)
  - Empagliflozin: do not use if eGFR < 45ml/min
  - Dapagliflozin: do not use if eGFR <60ml/min</li>





# Empagliflozin new indication

#### -----INDICATIONS AND USAGE-----

JARDIANCE is a sodium-glucose co-transporter 2 (SGLT2) inhibitor indicated:

- as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus,
- to reduce the risk of cardiovascular death in adult patients with type 2 diabetes mellitus and established cardiovascular disease. (1)

<u>Limitations of Use:</u> Not for the treatment of type 1 diabetes mellitus or diabetic ketoacidosis (1)





# Euglycaemic DKA with SGLT2i

- Increased risk euglycaemic DKA with all SGLT inhibitors (FDA warning)
- Uncommon, but risk may be increased in
  - Long-standing T2DM with marked B cell insufficiency
  - LADA with rapid evolution toward T1DM
  - Prolonged starvation / low carb diet
  - Intercurrent illness
  - Periop period (recent severe cases requiring ICU/HDU)
- Cease SGLT2 inhibitors 3 days preop







# SGLT2 inhibitor ("flozins")

- Dapagliflozin (Forxiga®)
- Dapagliflozin/metformin (Xigduo®)
- Saxagliptin/Dapagliflozin (Qtern®)
- Empagliflozin (Jardiance®)
- Empagliflozin/Metformin (Jardiance Duo®, Synjardy ®)
- Empagliflozin/Linaglitpin (Glyxambi®)









- Stimulates beta-cell insulin release, slows gastric emptying, suppresses glucagon (injection)
- Hba1c reduction: up to 0.85%
- Side effects: weight loss up to 4.3kg, nausea, gallstones (liraglutide), retinopathy (semaglutide)
- CKD:
  - Dose reduce or reconsider use if eGFR 30-50
  - Not recommended eGFR < 30 lack of data</li>
- Summary of CV outcomes
  - Reduction in 3-point MACE with liraglutide (LEADER) and semaglutide (SUSTAIN-6)





### Insulin



- Most potent glucose lowering agent:
  - consider if blood glucose levels are very high, signs of metabolic decompensation, preoperatively, high dose corticosteroids
- Side effects:
  - hypoglycaemia, weight gain
- CKD:
  - eGFR > 50: no change
  - eGFR 10 50: reduce by 25%
  - eGFR < 10: reduce by 50%
- CV outcomes
  - Neutral: insulin glargine (ORIGIN), insulin dugludec (DEVOTE)







# T2DM drugs and CV outcomes

| Drug         | ASCVD                                   | HF                                         |
|--------------|-----------------------------------------|--------------------------------------------|
| Metformin    | benefit                                 | neutral                                    |
| Sulfonylurea | neutral                                 | neutral                                    |
| Acarbose     | neutral                                 | neutral                                    |
| TZDs         | potential benefit (pioglitazone)        | increased risk                             |
| DPP4i        | neutral                                 | ? increased risk (saxagliptin, alogliptin) |
| GLP-1 RA     | neutral<br>(lixisenatide, exenatide ER) | neutral                                    |
|              | benefit<br>(liraglutide, semaglutide)   | neutral                                    |
| SGLT2i       | benefit (empagliflozin)                 | Benefit (empagliflozin, canagliflozin)     |
| Insulin      | neutral                                 | neutral                                    |

### T2DM with comorbidities

- Atherosclerotic CVD predominates
  - SGLT2i or GLP-1 RA with proven CV benefit
- Heart failure or CKD predominates
  - SGLT2i if eGFR adequate
  - GLP-1 RA with proven CV benefit if SGLT2i not tolerated
- Compelling need to minimise weight
  - GLP-1 RA with good efficacy for weight loss or SGLT2i
  - DPP4i triple therapy or if GLP-1 RA or SGLT2i not tolerated
- Compelling need to minimise hypoglycaemia
  - DPP4i, GLP-1 RA, SGLT2i





# Take home message

- Individualise treatment targets in everyone
- Lifestyle interventions and CV risk factor modification in most
- Medical therapy
  - Metformin first-line where possible
  - SGLT2i when pre-existing ASCVD, HF, mild-mod CKD, weight control but assess risk of side effects before prescribing
  - GLP-1 RA when with pre-existing ASCVD, weight control
  - DPP4i otherwise, option in severe CKD (weight neutral)
  - SU in symptomatic, leaner patient (weight gain)
  - Insulin when rapid glycaemic control required (weight gain)





### References - 1

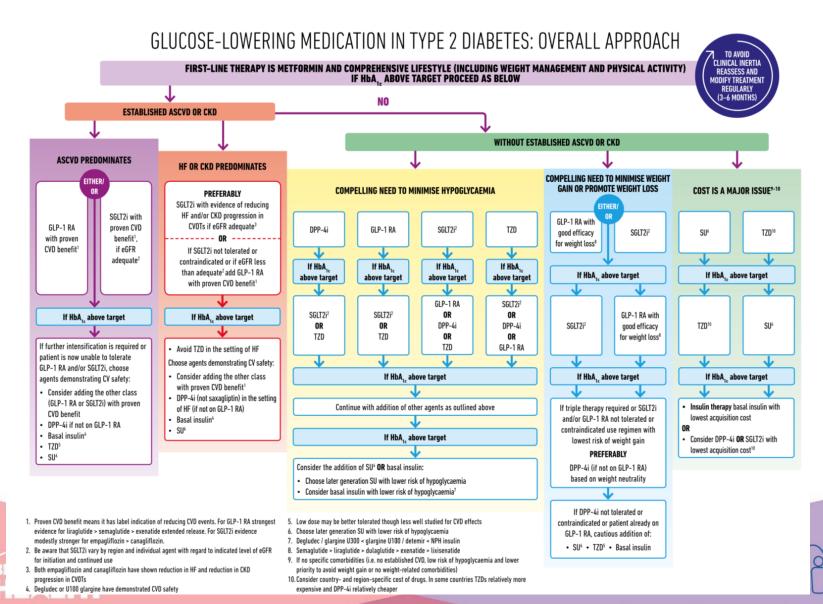
- ADA Standards of Medical Care in Diabetes 2017, Diabetes Care, January 2017 Volume 40, Supplement 1
- ACCORD Group, Effects of Intensive Glucose Lowering in Type 2 Diabetes, N Engl J Med 2008;358:2545-59.
- ADVANCE Group, Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes, N Engl J Med 2008;358:2560-72.
- Australian Medicines Handbook 2018 (computer program). Adelaide: Australian Medicines Handbook Pty Ltd; 2018 April.
- Davies M et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetologia Oct 2018
- Dormandy J, et. al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial, Lancet 2005; 366: 1279–89
- Green J, et. al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes, NEJM 2015;373:232-42 Gunton J et al. A new blood glucose management algorithm for type 2 diabetes. A position statement of the Australian Diabetes Society, Nov 2016
- Holman R, et. al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes, N Engl J Med 2017;377:1228-39
- Home P, et. al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial, Lancet 2009; 373: 2125–35
- Inzucchi S, et. al. Empagliflozin and Assessment of Lower-Limb Amputations in the EMPA-REG OUTCOME Trial, Diabetes Care 2017, Nov



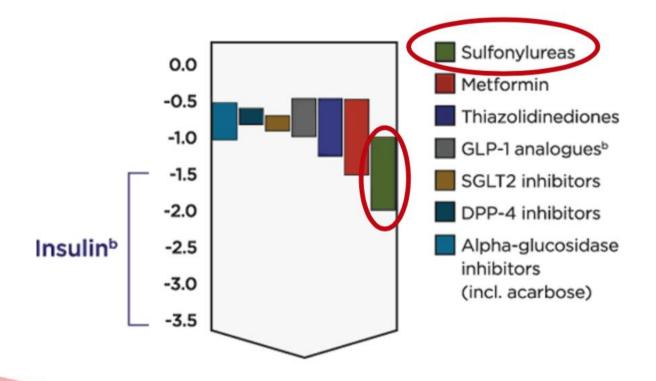


### References - 2

- Marso S, et. al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes, N Engl J Med 2016;375:311-22
- Marso S, et. al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes, N Engl J Med 2016;375:1834-44
- Neal B, et. al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes, N Engl J Med 2017;377:644-57
- Pfeffer M, et. al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome, N Engl J Med 2015;373:2247-57
- US FDA, Guidance for Industry: Diabetes Mellitus Evaluating Cardiovascular Risk in New Anti-diabetic Therapies to Treat Type 2 Diabetes. December 2008
- UKPDS Group, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33), THE LANCET Vol 352 September 12, 1998
- Scirica B, et. al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus, NEJM 369;14, October 3, 2013
- Vaccaro O, et. al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial, Lancet Diabetes
- White W, et. al. Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes, NEJM 369;14
- Zinman B, et. al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes, N Engl J Med 2015;373:2117-28







# Extra slides

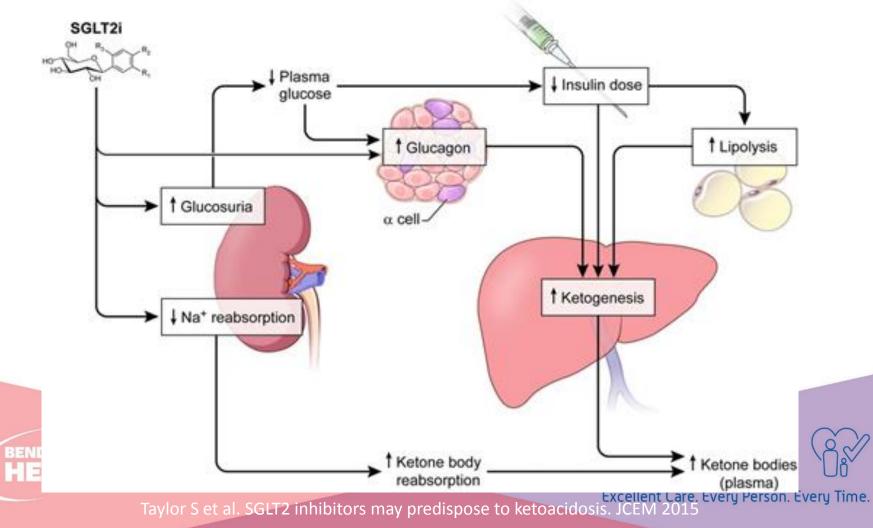






# T2DM drugs and Hba1c reduction








Excellent Care. Every Person. Every Time.

Source: www.npswise.com.au Slide courtesy Shane Hamblin

### SGLT2i-induced ketoacidosis

